· Hrbeu Home    · College Home     · 中文版

Group leader Pengfei Wang

Date:2018-05-03  Hits:284

Name:Pengfei Wang
Research
Mid-infrared optical fiber lasers; Special optical glass materials; Fiber optica sensors; Micro-nano optical fiber optics devices; Integrated optical optoelectronics devices.
Contact:

Tel:
0451-82588338
E-mail:
pwang@hrbeu.edu.cn
Postcode:
150001
Address:
#112, Lixue Building, Harbin Engineering University, 145 Nantong Street, Harbin 150001, China

Individual Resume:

    Prof. Pengfei Wang received his Ph.D. degree of Optics Engineering at the Photonics Research Centre (PRC), Dublin Institute of Technology (DIT), Ireland in Nov. 2008. Previously he worked as a Research Assistant at the Institute of Microelectronics and Microsystems, Italian National Research Council in Bologna Italy from 2004 to 2005. He worked as a Research Associate at the PRC of DIT Ireland, supported by the Irish Research Council EMPOWER Postdoctoral Scholarship from 2009 to 2010. In 2010, he joined the Optoelectronics Research Centre of University of Southampton, United Kingdom, funded by the EU Marie Curie Research Fellowship. In 2011, he joined the Advanced Laser Lab of the SPI lasers (Southampton UK) as a research fellow. Then he has been appointed as a Senior Research Fellow (Tenured) at the PRC of DIT from 2013 to 2015. From Sep. 2015, he has been working with the College of Science, Harbin Engineering University in China, as a full-time professor. His research interests include compound glass materials, fibre lasers, computational photonics (modelling, simulation and optimization), photonic devices (such as microfibre/nanowire based photonic devices, fibre optic sensors etc) and applications development (optical communication and optical sensing). He has authored and co-authored over 200 papers on academic journals and international conferences so far and his H-index is 26.


Publications:

1. Refereed papers in primary journals:



[1].  Angzhen Li, Wenhao Li, Meng Zhang, Yindong Zhang, Shunbin Wang, Anping Yang, Zhiyong Yang, Elfed Lewis, Gilberto Brabilla, and Pengfei Wang*, “A Tm3+-Ho3+ Codoped Tellurite Glass Microsphere Laser in the 1.47 μm Wavelength Region,” Optics Letters, accepted for publication. (Corresponding author)

[2].  Xin Wang, Wenhao Li, Ke Tian, Elfed Lewis, Gilberto Brambilla, Yongkang Dong, Xiao Wu, and Pengfei Wang*, “Enhanced near-infrared emission in Yb3+-Cr3+ codoped KZnF3 glass ceramics excited by a solar simulator,” Ceramics International, accepted for publication. (Corresponding author)

[3].  Yu Yin, Shi Li, Jing Ren, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, “High-sensitivity salinity sensor based on an optical microfibre coil resonator,” Optics Express, accepted for publication. (Corresponding author)

[4].  Shi Li, Yu Yin, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, “A twelve-wavelength Thulium-doped fibre laser based on a microfibre coil resonator incorporating black phosphorus,” Optics Communications, accepted for publication. (Corresponding author)

[5].  Mohd Hafiz Jali, Hazli Rafis Abdul Rahim, Md Ashadi Md Johari, Sana Sulaiman Hamid, Haziezol Helmi Mohd Yuso, Siddharth Thokchom, Pengfei Wang, Sulaiman Wadi Harun, “Optical characterization of different waist diameter on microfiber loop resonator humidity sensor,” Sensors and Actuators A: Physical, vol. 285, pp. 200-209, 2019.

[6].  Ke Tian, Meng Zhang, Gerald Farrell, Ruoning Wang, Elfed Lewis, and Pengfei Wang*, “A highly sensitive strain sensor based on composite interference established within an S-tapered multimode fibre structure,” Optics Express, vol. 26, no. 26, pp. 33982-33992, 2018. (Corresponding author)

[7].  Ke Tian, Gerald Farrell, Xianfan Wang, Elfed Lewis, and Pengfei Wang*, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fibre structure,” Applied Optics, vol. 57, no. 32, pp. 9962-9968, 2018. (Corresponding author)

[8].  Shi Li, Yating Yi, Yu Yin, Yuxuan Jiang, Haiyan Zhao, Yanqiu Du, Yujin Chen, Elfed Lewis, Gerald Farrell, Sulaiman Wadi Harun, and Pengfei Wang*, “A microfiber knot incorporating a tungsten disulfide saturable absorber based multi-wavelength mode-locked erbium-doped fiber laser,” Journal of Lightwave Technology, vol. 36, no. 23, pp. 5633-5639, 2018.. (Corresponding author)

[9].  Ke Tian, Gerald Farrell, Xianfan Wang, Yifan Xin, Yanqiu Du, Wenlei Yang, Haidong Liang, Elfed Lewis, and Pengfei Wang*, “Investigation of a novel SMS fibre based planar multimode waveguide and its sensing performance,” Sensors and Actuators A: Physical, vol. 284, pp. 28-34, 2018. (Corresponding author)

[10].       Huan Liu, Yaxian Fan, Lin Li, Hongge Chen, Pengfei Wang, and Zhiyong Tao, “Self-adaptive terahertz spectroscopy from atmospheric vapor based on Hilbert-Huang transform,” Optics Express, vol. 26, no.21, 27279-27293, 2018.

[11].Xianfan Wang, Jiquan Zhang, Ke Tian, Shunbin Wang, Libo Yuan, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, “Investigation of a novel SMS fibre based planar multimode waveguide and its sensing performance,” Optics Express, vol. 26, no.20, 26534-26543, 2018. (Corresponding author)

[12].       Xin Wang, Yushi Chu, Zhiyong Yang, Ke Tian, Wenhao Li, Shunbin Wang, Shijie Jia, Gerald Farrell, Gilberto Brambilla and Pengfei Wang*, “Broadband multicolor upconversion from Yb3+-Mn2+ codoped fluorosilicate glasses and transparent glass ceramics,” Optics Letters, vol. 43, No. 20, pp. 5013-5016, 2018. (Corresponding author)

[13].       Ke Tian, Gerald Farrell, Wenlei Yang, Xianfan Wang, Elfed Lewis, and Pengfei Wang*, “Simultaneous Measurement of Displacement and Temperature Based on Balloon-Shaped Bent SMF Structure Incorporating an LPG,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4960-4966, 2018. (Corresponding author)

[14].       Xin Wang, Yongze Yu, Shunbin Wang, Jonathan M.Ward, Síle Nic Chormaic, and Pengfei Wang*, “Singlemode Green Lasing and Multicolor Luminescent Emission from an Er3+-Yb3+ Co-doped Compound Fluorosilicate Glass Microsphere Resonator,” OSA Continuum, vol. 1, no. 1, pp. 261-273, 2018. (Corresponding author)

[15].       Yu Yin, Jibo Yu, Yuxuan Jiang, Shi Li, Gerald Farrell, Elfed Lewis, and Pengfei Wang*, “Investigation of temperature dependence of microfibre coil resonators,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4887-4893, 2018. (Corresponding author)

[16].       Angzhen Li, Jiquan Zhang, Meng Zhang, Wenhao Li, Shunbin Wang, Elfed Lewis, Gilberto Brambilla, and Pengfei Wang*, “Effect of Tm3+ concentration on the emission wavelength shift in Tm3+-doped silica microsphere lasers,” Optics Letters, vol. 43, no.18, pp. 4325-4328, 2018. (Corresponding author)

[17].       Angzhen Li, Jibo Yu, Meng Zhang, Xiaosong Lu, Jiquan Zhang, Elfed Lewis, Gerald Farrell, and Pengfei Wang*, “An Yb3+-Ho3+ Codoped Glass Microsphere Laser in the 2.0 µm Wavelength Regions,” IEEE Photonics Technology Letters, vol. 30, no. 17, pp. 1543-1546, 2018. (Corresponding author)

[18].       Jibo Yu, Elfed Lewis, Gilberto Brambilla, Pengfei Wang*, “Temperature sensing performance of microsphere resonators,” Sensors, vol. 18, pp. 2515, 2018. (Corresponding author)

[19].       Jibo Yu, Elfed Lewis, Gerald Farrell, Pengfei Wang*, “Compound glass microsphere resonator devices,” Micromachines, vol. 9, pp. 356, 2018. (Corresponding author)

[20].       Meng Zhang, Wenlei Yang, Ke Tian, Jibo Yu, Angzhen Li, Shunbin Wang, Elfed Lewis, Gerald Farrell, Libo Yuan, and Pengfei Wang*, “An in-fibre whispering-gallery modes microsphere resonator based integrated device,” Optics Letters, vol. 43, no. 16, pp. 3961-3964, 2018. (Corresponding author)

[21].       J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. Wang, J. Yang, and L. B. Yuan, “In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing,” Opt. Express, vol. 26, no.15, pp. 19091-19099, 2018.

[22].       A. H. H. Al-Masoodi⁠, I. A. M. Alani⁠, M. H. M. Ahmed, Ab. H. H. Al-Masoodi, Ahmed. A. Alani⁠, P. Wang⁠, S. W. Harun, “Cobalt oxide nanocubes thin film as saturable absorber for generating Q-switched fiber lasers at 1 and 1.5 µm in ring cavity configuration,” Optical Fiber Technology, vol. 45, pp. 128-136, 2018.

[23].       K. Tian, G. Farrell, E. Lewis, X. Wang, H. Liang and P. Wang*, “A High sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating,” Measurement Science and Technology, vol. 29, pp. 085104, 2018. (Corresponding author)

[24].       B. Guo, S. Li, Y. Fan and P. Wang, “Versatile soliton emission from a WS2 mode-locked fiber laser,” Optics Communications, vol. 406, pp. 66-71, 2018.

[25].       M. F. A. Rahman, A. A. Latiff, A. H. A. Rosol, K. Dimyati, P. Wang and S. W. Harun, “Ultrashort Pulse Soliton Fiber Laser Generation with Integration of Antimony Film Saturable Absorber,” Journal of Lightwave Technology, vol. 36, no. 16, pp. 3522-3527, 2018.

[26].       X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang*, “A High Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode (SSPMS) Fiber Structure,” Journal of Lightwave Technology, vol. 36, no. 13, pp. 2730-2736, 2018. (Corresponding author)

[27].       P. Wang, H. Zhao, X. Wang, G. Farrell and G. Brambilla, “A review of multimode interference in tapered optical fibers and related applications,” Sensors, vol. 18, pp.858, 2018.

[28].       Y. Jiang, Z. fang, Y. Du, E. Lewis, G. Farrell and P. Wang*, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Optics Express, vol. 26, no. 1, pp. 356-366, 2018. (Corresponding author)

[29].       Z. Fang, S. Nic Chormaic, S. Wang, X. Wang, Y. Jiang, J. Qiu, and P. Wang*, “Bismuth-doped glass microsphere lasers,” Photonics Research, vol. 5, no. 6, pp. 740-744, 2017. (Corresponding author)

[30].       Chengguo Tong, Tao Zhang, Jianqi Li, Pengfei Wang, Chong Kang, Libo Yuan, “Research on taper zone coupling from single-core fiber to annular-core hollow beam fiber,” Optical Review, vol. 24, no. 1, pp. 33-38, 2017.

[31].       Q. Hu, Z. Gao, X. Lu, J. Ren,* F. He, Z. Fang, Y. Liu, S. Sun, P. Yang and P. Wang*, “Bane to boon: intrinsic defect sensitized photoluminescence from Mn2+ or rare-earth ion doped fluorosilicate photonic glasses,” Journal of Materials Chemistry C, vol. 5, pp. 11806-11814, 2017. (Corresponding author)

[32].       B. Guo, O. Ouyang, S. Li, Z. Fang, P. Wang, “Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite,” Chinese Journal of Lasers, vol. 44, no. 7, pp. 0703012-1, 2017. (In Chinese)

[33].       X. Lu, Y. Zhang, J. Ren, E. Lewis, G. Farrell, A. Yang, Z. Yang and P. Wang*, “Chalcogenide glasses with embedded ZnS nanocrystals: Potential mid-infrared laser host for divalent transition metal ions,” Journal of the American Ceramic Society, vol. 101, no. 2, pp. 15247, 2017. (Corresponding author)

[34].       K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang*, “A strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Optics Express, vol. 25, no. 16, pp. 18885-18896, 2017. (Corresponding author)

[35].       X. Wang, G. Farrell, E. Lewis, K. Tian, L. Yuan, and P. Wang*, “A humidity sensor based on a singlemode-side polished multimode-singlemode optical fibre structure coated with gelatin,” Journal of Lightwave Technology, vol. 35, no. 18, pp. 4087-4094, 2017. (Corresponding author)

[36].       Z. Gao, Y. Liu, J. Ren, Z. Fang, X. Lu, E. Lewis, G. Farrell, J. Yang and P. Wang*, “Selective doping of Ni2+ in highly transparent glass-ceramics containing nano-spinels ZnGa2O4 and Zn1+xGa2-2xGexO4 for broadband near-infrared fiber amplifiers,” Scientific Reports, vol. 7, Article no. 1783, 2017. (Corresponding author)

[37].       X. Wang, E. Lewis, P. Wang*, “Investigation of the Self-Imaging Position of a Singlemode-Multimode-Singlemode (SMS) Optical Fiber Structure,” Microwave and Optical Technology Letters, vol. 59, no. 7, pp. 1645-1651, 2017. (Corresponding author)

[38].       Z. Fang, X. Xiao, X. Wang, Z. Ma, E. Lewis, G. Farrell, P. Wang*, J. Ren, H. Guo, J. Qiu, Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers, Scientific Reports, vol. 7, pp. 44456, 2017. (Corresponding author)

[39].       P. Wang, A. M. Hatta, H. Zhao, W. Yang, J. Ren, Y. Fan, G. Farrell, and G. Brambilla, Passive photonic integrated ratiometric wavelength monitor with resolution better than 15 pm, Opt. Express, vol. 25, no. 3, pp. 2939-2949, 2017.

[40].       K. Tian, Y. Xin, W. Yang, T, Geng, J. Ren, Y, Fan, G. Farrell, E. Lewis, and P. Wang*, A curvature sensor based on twisted single-mode-multimode-single-mode hybrid optical fibre structure, Journal of Lightwave Technology, vol. 35, no. 9, pp. 1725-1731, 2017. (Corresponding author)

[41].       L. She, P. Wang*, W. Sun, X. Wang, W. Yang, G. Brambilla, G. Farrell, A Chalcogenide Multimode Interferometric Temperature Sensor Operating at a Wavelength of 2 μm, IEEE Sensors Journal, vol. 17, no. 6, pp. 1721-1726, 2017. (Corresponding author)

[42].       Y. Chu, J. Ren, J. Zhang, G. Peng, J. Yang, P. Wang* and Libo Yuan, “Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers,” Scientific Reports, vol. 6, pp. 33865, 2016.

[43].       P. Wang, R. Madugani, H. Zhao, W. Yang, J. M. Ward, Y. Yang, G. Farrell, G. Brambilla and S. Nic Chormaic, “Packaged Optical Add-Drop Filter Based on an Optical Microfiber Coupler and a Microsphere,” IEEE Photonics Technology Letters, vol. 28, no. 20, pp. 2277-2280, 2016.

[44].       B. Guo, Q. Lyu, Y. Yao and P. Wang*, “Direct generation of dip-type sidebands from WS2 mode-locked fiber laser,” Optical Materials Express, vol. 6, no. 8, pp. 2475-2486, 2016. (Corresponding author)

[45].       Y. Chu, J. Ren, J. Zhang, L. Liu, P. Wang, J. Yang, G. Peng, and L. Yuan, Effects of melting temperature and composition on spectroscopic properties of Er3+-doped bismuth glasses, Opt. Mater. Express, vol. 6, pp.279-287, 2016.

[46].       H. Zhao, G. Farrell, P. Wang and L. Yuan, “Investigation of particle harmonic oscillation using four-core fiber integrated twin-tweezers,” IEEE Photonics Technology Letters, vol. 28, no. 4, pp. 461-464, 2015.

[47].       P. Wang, J. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell and S. Nic Chormaic, Lead silicate glass optical microbubble resonator, Applied Physics Letters, vol. 106, no. 6, pp. 061101, 2015.

[48].       P. Wang, L. Bo, Y. Semenova, G. Farrell and G. Brambilla, “Optical microfiber based photonic components and their applications in label-free biosensing,” Biosensors, vol. 5, pp. 471-499, 2015.

[49].       P. Wang, A. M. Hatta, H. Zhao, J. Zheng, G. Farrell and G. Brambilla, “A ratiometric wavelength measurement based on a Silicon-on-Insulator Directional coupler integrated device,” Sensors, vol. 15, pp. 21280-21293, 2015.

[50].       L. Bo, P. Wang, Y. Semenova and G. Farrell, Optical microfiber coupler based humidity sensor with a polyethylene oxide coating, Microwave and Optical Technology Letters, vol. 57, no. 2, pp. 457-460, 2015.

[51].       P. Wang, T. Lee, M. Ding, Z. Lian, X. Feng, Y. Ma, L. Bo, Q. Wu, Y. Semenova, W. Loh, G. Farrell and G. Brambilla, White Light Trapping Using Supercontinuum Generation Spectra in a Lead-Silicate Fibre Taper, IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 1, pp. 40-45, 2014.

[52].       P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, W. Sun, L. Yuan, G. Brambilla and G. Farrell, Photonic crystal fiber half taper probe based refractometer, Optics Letters, vol. 39, no. 7, pp. 2076-2079, 2014.

[53].       P. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell and G. Brambilla, Packaged high-Q microsphere resonator based add-drop filter, Optics Letters, vol. 39, no. 17, pp. 5208-5211, 2014.

[54].       Q. Wu, J. Yuan, C. Yu, X. Sang, L. Sun, J. Li, T. Guo, B. Guan, H. Chan, K. Chiang, Y. Ma, P. Wang, Y. Semenova, and G. Farrell, UV exposure on a single-mode fiber within a multimode interference structure, Opt. Lett., vol. 39, no. 22, pp. 6521-6524, 2014.

[55].       Q. Wu, M. Ding, J. Yuan, H. Chan, Y. Ma, Y. Semenova, P. Wang, C. Yu and G. Farrell, The use of a bend singlemode-multimode-singlemode (SMS) fibre structure for vibration sensing, Optics & Laser Technology, vol. 63, pp. 29-33, 2014.

[56].       M. Ding, P. Wang, W. Wang, J. Wang and G. Brambilla, FIB-milled Gold-coated Singlemode-Multimode-Singlemode Fiber Tip Refractometer, IEEE Photonics Technology Letters, vol. 26, no. 3, pp. 239-241, 2014.

[57].       C. Guan, M. Ding, J. Shi, P. Hua, P. Wang, L. Yuan and G. Brambilla, Experimental observation and analysis of all-fiber plasmonic double Airy beams, Optics Express, vol. 22, no. 15, pp. 18365¨C18371, 2014.

[58].       C. Guan, M. Ding, J. Shi, P. Wang, P. Hua, L. Yuan and G. Brambilla, Compact all-fiber plasmonic Airy-like beam generator, Optics Letters, vol. 39, no. 5, pp. 1113-1116, 2014.

[59].       L. Bo, C. C. O’Mahony, Y. Semenova, N. Gilmartin, P. Wang and G. Farrell, Microfiber coupler based label-free immunosensor, Optics Express, vol. 22, no. 7, pp. 8150-8155, 2014. (Corresponding author)

[60].       P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell and G. Brambilla, A fiber tip high temperature sensor based on multimode interference, Optics Letters, vol. 38, no. 22, pp. 4617-4620, 2013.

[61].       P. Wang, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Brambilla and G. Farrell, Low Temperature sensitivity periodically tapered photonic crystal fiber based refractometer, Optics Letters, vol. 38, no. 19, pp. 3795-3798, 2013.

[62].       C. Grivas, C. Li, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, P. Lagoudakis, “Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals,” Nature Communications, vol. 4, pp. 2376, 2013.

[63].       Q. Wu, H. Chan, J. Yuan, Y. Ma, M. Yang, Y. Semenova, B. Yan, P. Wang, C. Yu, and G. Farrell, Enhanced refractive index sensor using a combination of a long peroid fiber grating and a small core singlemode fiber structure, Measurement Science and Technology, vol. 24, no. 9, pp. 094002, 2013.

[64].       C. Guan, J. Shi, M. Ding, P. Wang, P. Hua, L. Yuan and G. Brambilla, In-line rainbow trapping based on plasmonic gratings in optical microfibers, Optics Express, vol. 21, no. 14, pp. 16552-16560, 2013.

[65].       P. Wang, M. Ding, T. Lee, G. S. Murugan, L. Bo, Y. Semenova, Q. Wu, D. Hewak, G. Brambilla and G. Farrell, Packaged chalcogenide microsphere resonator with high Q-factor, Applied Physics Letters, vol. 102, pp. 131110, 2013.

[66].       P. Wang, C. C. O'Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato and G. Brambilla, Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers, Applied Physics Letters, vol. 102, no. 1, pp. 011111, 2013.

[67].       P. Wang, G. Brambilla, M. Ding, T. Lee, Lin Bo, Y. Semenova, Q. Wu, G. Farrell, An enhanced refractometer based on periodically tapered small core singlemode fiber, IEEE Sensors Journal, vol. 13, no. 1, pp. 180-185, 2013.

[68].       L. Bo, P. Wang, Y. Semenova, G. Farrell, Highly-sensitive fiber refractometer based on an optical microfiber coupler, IEEE Photonics Technology Letters, vol. 25, no. 3, pp. 228-230, 2013.

[69].       P. Wang, M. Ding, L. Bo, Y. Semenova, Q. Wu, G. Farrell, A silica single-mode fibre-chalcogenide multimode fibre-silica singlemode fibre structure, Photonics Letters of Poland, vol. 4, no. 4, pp. 143-145, 2012.

[70].       P. Wang, G. S. Murugan, T. Lee, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, F. Koizumi and G. Farrell, “High-Q bismuth silicate nonlinear glass microsphere resonators,” IEEE Photonics Journal, vol. 4, no. 3, pp. 1013-1020, June 2012.

[71].       P. Wang, G. S. Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrell, “Chalcogenide Microsphere Fabricated From Fiber Tapers Using Contact with a High Temperature Ceramic Surface,” IEEE Photonics Technology Letters, vol. 24, no. 13, pp. 1103-1105, 2012.

[72].       P. Wang, M. Ding, G. Brambilla., Y. Semenova., Q. Wu., G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electronics Letters, vol. 48, no. 5, pp. 283-284, 2012.

[73].       M. Ding, P. Wang, G. Brambilla, A Fast-Response, High-Temperature Microfiber Coupler Tip thermometer, IEEE Photonics Technology Letters, vol. 24, no. 14, pp. 1209-1211, 2012.

[74].       M. Ding, P. Wang, G. Brambilla, “A microfiber coupler tip thermometer,” Optics Express, vol. 20, no. 5, pp.5402-5408, 2012.

[75].       Q. Wu, Y. Ma, J. Yuan, Y. Semenova, P. Wang, C. Yu, and G. Farrell, “Evanescent field coupling between two parallel close contact SMS fiber structures,” Optics Express, vol. 20, no. 3, pp. 3098-3109, 2012.

[76].       Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “Numerical investigation on a laser based localised joining with a glass frit intermediate layer,” Microsystem Technologies, vol. 18, no. 1, pp. 87-92, 2012.

[77].       P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, and G. Brambilla, “Germanium microsphere high-Q resonator,” Optics Letters, vol. 37, no. 4, pp. 728-730, 2012.

[78].       P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrell, “The Use of a Fiber Comb Filter Fabricated By a CO2 Laser Irradiation to Improve the Resolution of a Ratiometric Wavelength Measurement System,” Journal of Lightwave Technology, vol. 30, no. 8, pp. 1143-1149, 2012.

[79].       Q. Wu, Y. Semenova, Y. Ma, P. Wang, T. Guo, L. Jin and G. Farrell, “Light coupling between a singlemode- multimode-singlemode (SMS) fiber structure and a long period fiber grating”, Journal of Lightwave Technology, vol. 29, no. 24, pp. 3683-3688, 2011

[80].       Q. Wu, Y. Semenova, P. Wang, G. Farrell, “A comprehensive analysis verified by experiment of a refractometer based on an SMF28- Small-Core Singlemode fiber (SCSMF) -SMF28 fiber structure”, Journal of Optics, vol. 13, no. 12, pp. 125401, 2011

[81].       M. Ding, P. Wang, T. Lee, G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Applied Physics Letters, vol. 99, pp. 051105, 2011.

[82].       P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrell, “A high sensitivity, evanescent field refractometric sensor based on tapered multimode fiber interference,” Optics Letters, vol. 36, no. 12, pp. 2233-2235, 2011.

[83].       P. Wang, G. S. Murugan, T. Lee, X. Feng, Y. Semenova, Q. Wu, W. Loh, G. Brambilla, J. S. Wilkinson and G. Farrell, “Lead silicate glass microsphere resonators with absorption-limited Q,” Applied Physics Letters, vol. 98, pp. 181105, 2011.

[84].       P. Wang, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “A simple ultrasensitive displacement sensor based on a high bend loss singlemode fibre and a ratiometric measurement system,” Journal of Optics, vol. 13, pp. 075402, 2011.

[85].       P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, G. Farrell, “Investigation of singlemode-multimode-singlemode and singlemode-tapered multimode-singlemode fibre structures and their application for refractive index sensing,” Journal of the Optical Society of America B, vol. 28, no. 5, pp. 1180-1186, 2011.

[86].       P. Wang, Y. Semenova, Q. Wu, G. Farrell, “A fiber-optic voltage sensor based on a macrobending structure,” Optics & Laser Technology, vol. 43, no. 5, pp. 922-925, 2011.

[87].       P. Wang, Y. Semenova, J. Zheng, Q. Wu, A. M. Hatta, G. Farrell, “Numerical study of an ion-exchanged glass waveguide using both two-dimensional and three-dimensional models,” Optics & Laser Technology, vol. 43, no. 4, pp. 882-888, 2011.

[88].       P. Wang, Y. Semenova, J. Zheng, Q. Wu, G. Farrell, “Proposal for a Simple Integrated Optical Ion Exchange Waveguide Polarizer with a Liquid Crystal Overlay,” Optics Communications, vol. 284, pp. 979-984, 2011.

[89].       Q. Wu, Y. Semenova, P. Wang and G. Farrell, “Fibre heterostructure for simultaneous strain and temperature measurement,” Electronics Letters, vol. 47, no. 12, pp. 713-714, 2011.

[90].       Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu and G. Farrell, “Fiber refractometer based on an FBG and SMS fiber structure,” Optics Letters, vol. 36, No, 12, pp. 2197-2199, 2011.

[91].       Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, G. Farrell, “Singlemode-Multimode-Singlemode fiber structures for simultaneous measurement of strain and temperature,” Microwave and Optical Technology Letters, vol. 53, no. 9, pp. 2181-2185, 2011.

[92].       Q. Wu, Y. Semenova, J. Mathew, P. Wang and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Optics Letters, vol. 36, No, 10, pp. 1752-1754, 2011.

[93].       Q. Wu, Y. Semenova, P. Wang and G. Farrell, “High sensitivity SMS fiber structure based refractometer: analysis and experiment,” Optics Express, vol. 19, No, 9, pp. 7937-7944, 2011.

[94].       Q. Wu, Y. Semenova, P. Wang, A. Hatta and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent singlemode multimode singlemode fiber structure,” Measurement Science and Technology, vol. 22, pp. 025203, 2011.

[95].       Q. Wu, A. Hatta, P. Wang, Y. Semenova and G. Farrell, “Use of a Bent Single SMS Fiber Structure for Simultaneous Measurement of Displacement and Temperature Sensing,” IEEE Photon. Tech. Lett., vol. 23, no. 2, pp. 130-132, 2011.

[96].       J. Mathew, Y. Semenova, G. Rajan, P. Wang, G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Optics & Laser Technology, vol. 43, no. 7, pp. 1301-1305, 2011.

[97].       P. Wang, Y. Semenova, Y. Li, Q. Wu, G. Farrell, “A macrobending singlemode fiber refractive index sensor for low refractive index liquids,” Photonics Letters of Poland, vol. 2, no. 2, pp. 67-69, 2010.

[98].       P. Wang, Y. Semenova, Q. Wu, G. Farrell, “A bend loss based singlemode fiber micro-displacement sensor,” Microwave and Optical Technology Letters, vol. 52, no. 10, pp. 2231-2235, 2010.

[99].       P. Wang, Y. Semenova, Q. Wu, J. Zheng, G. Farrell, “Temperature performance of a macrobending singlemode fiber based refractometer,” Applied Optics, vol. 49, no. 10, pp. 1744-1749, 2010. (The paper has been selected and published on the Virtual Journal for Biomedical Optics-OSA, vol. 5, Iss. 8, Jun. 8, 2010)

[100].     Q. Wu, Y. Semenova, G. Rajan, P. Wang and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Applied Optics, vol. 49, no. 29, pp. 5626-5631, 2010.

[101].     Q. Wu, Y. Semenova, A. M. Hatta, P. Wang and G. Farrell, “Bent SMS fiber structure for temperature measurement,” Electronics Letters, vol. 46, no. 16, pp. 1129-1130, 2010.

[102].     Q. Wu, P. Wang, Y. Semenova and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Measurement Science and Technology, vol. 21, no. 9, pp. 094013, 2010.

[103].     Q. Wu, G. Rajan, P. Wang, Y. Semenova and G. Farrell, “Optimum design for maximum wavelength resolution for an edge filter-based ratiometric system,” Optics & Laser Technology, vol. 42, pp. 1032-1037, 2010.

[104].     Q. Wu, Y. Semenova, A. Sun, P. Wang and G. Farrell, High resolution temperature insensitive interrogation technique for FBG sensors, Optics & Laser Technology, vol. 42, pp. 653-656, 2010.

[105].     A. M. Hatta, Y. Semenova, G. Rajan, P. Wang, J. Zheng and G. Farrell, “Analysis of temperature dependence for a ratiometric wavelength measurement system using SMS fiber structure based edge filters,” Optics & Communications, vol. 283, pp. 1291-1295, 2010.

[106].     P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, J. Zheng, “Macrobending single-mode fiber-based refractometer,” Applied Optics, vol. 48, no. 31, pp. 6044-6049, 2009.

[107].     P. Wang, G. Farrell, Y. Semenova, “A generalized design process for fiber bend loss based edge filters for a wavelength measurement system,” Applied Optics, vol. 48, no. 18, pp. 3055-3061, 2009.

[108].     P. Wang, G. Farrell, Y. Semenova, G. Rajan, “Investigation of Polarization Dependent Loss for a Macrobending Loss Sensitive Singlemode Fiber,” Microwave and Optical Technology Letters, vol. 51, no. 6, pp. 1460-1464, 2009.

[109].     P. Wang, Y. Semenova, G. Rajan, T. Freir and G. Farrell, “The temperature dependence of polarization dependent loss for a macrobending singlemode fiber based edge filter,” IEEE Photonics Technology Letters, vol. 21, no. 8, pp. 516-518, 2009.

[110].      G. Rajan, Y. Semenova, P. Wang and G. Farrell, “Temperature induced instabilities in macro-bend fiber based wavelength measurement systems,” Journal of Lightwave Technology, vol. 27, no. 10, pp. 1355-1361, 2009.

[111].      A. M. Hatta, G. Farrell, P. Wang, G. Rajan and Y. Semenova, “Misalignment limits for a singlemode-multimode-singlemode fiber based edge filter,” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2482-2488, 2009.

[112].      L. Jia, F. Qiu, Y. Qian, Y. Ti, J. Zheng, P. Wang and G. Farrell, “Digital Camera Photographing in Measuring Propagation Loss Properties of Ion2exchange Planar Optical Waveguides,” ACTA PHOTONICA SINICA, vol. 38, no. 5, pp. 1058-1061, 2009. (In Chinese)

[113].      P. Wang, G. Rajan, G. Farrell, Y. Semenova, “Temperature dependence of a macrobending edge filter based on a high-bend loss fiber,” Optics Letters, vol. 33, no. 21, pp. 2470-2472, 2008.

[114].      P. Wang, G. Farrell, Y. Semenova, and G. Rajan, “Influence of fiber manufacturing tolerances on the spectral response of a bend loss based all-fiber edge filter,” Applied Optics, vol. 47, no. 16, pp. 2921-2925, 2008.

[115].      P. Wang, Y. Semenova, and G. Farrell, “Temperature dependence of macrobending loss in all-fiber bend loss edge filter,” Optics Communications, vol. 281, pp. 4312-4316, 2008.

[116].      G. Rajan, Y. Semenova, T. Freir, P. Wang and G. Farrell, “Modelling and analysis of the effect of noise on an edge filter based ratiometric wavelength system,” Journal of Lightwave Technology, vol. 26, no. 20, pp. 3434-3442, 2008.

[117].      G. Rajan, Y. Semenova, G. Farrell, Q. Wang, P. Wang, “A low polarization sensitivity all-fiber wavelength measurement system,” IEEE Photonics Technology Letters, vol. 20, no. 17, pp. 1464-1466, 2008.

[118].      G. Rajan, Q. Wang, Y. Semenova, G. Farrell and P. Wang, “Effect of polarization dependent loss on the performance accuracy of a ratiometric wavelength measurement system,” IET Optoelectronics, vol. 2, no. 2, pp. 63-68, 2008.

[119].      A. M. Hatta, G. Farrell, Q. Wang, G. Rajan, P. Wang and Y. Semenova, “Ratiometric wavelength monitor based on singlemode-multimode-singlemode fiber structure,” Microwave and Optical Technology Letters, vol. 50, no. 12, pp. 3036-3039, 2008.

[120].     P. Wang, G. Farrell, Q. Wang and G. Rajan, “An optimized macrobending-fiber-based edge filter,” IEEE Photonics Technology Letters, vol. 19, no. 15, pp. 1136-1138, 2007.

[121].     P. Wang, Q. Wang, G. Farrell, et. al., “Investigation of Macrobending Losses of Standard Single Mode Fiber with Small Bend Radii,” Microwave and Optical Technology Letters, vol. 49, no. 9, pp. 2133-2138, 2007.

[122].     Q. Wang, G. Rajan, P. Wang and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Applied Optics, vol.46, no.25, pp. 6362-6367, 2007.

[123].     Q. Wang, G. Rajan, G. Farrell, P. Wang, et al., “Macrobending fiber loss filter, ratiometric wavelength measurement and application,” Measurement Science and Technology, vol. 18, pp. 2082-3088, 2007.

[124].     Q. Wang, G. Farrell, P. Wang, G. Rajan and T. Freir, “Design of Integrated Wavelength Monitor based on a Y-branch with an S-bend Waveguide,” Sensors and Actuators A, vol.134, no.2, pp.405-409, 2007.

[125].     Q. Wang, G. Rajan, P. Wang and G. Farrell, “Polarization dependence of bend loss for a standard singlemode fiber,” Optics Express, vol.15, no.8, pp. 4909-4920, 2007.

[126].     G. Rajan, Y. Semenova, Q. Wang, G. Farrell and P. Wang, “A method to measure the reference strain of FBG interrogation system involving actuators,” Microwave and Optical Technology Letters, vol. 49, no.11, pp. 2658-2661, 2007.

[127].     Q. Wang, G. Farrell, T. Freir, G. Rajan and P. Wang, “Low-cost Wavelength Measurement based on a Macrobending Single-mode Fiber,” Optics Letters, vol. 31, no. 12, pp. 1785-1787, 2006.

[128].     P. Wang, J. Zheng, E Shulin and G. C. Righini, “Characterization of single step buried waveguides on BK7 glass by copper ion exchange,” Chinese Journal of Lasers, vol. 31, no.10, pp. 1252-1256, 2004. (In Chinese)

[129].     P. Wang, J. Zheng and G. C. Righini, “Fabricate in Cu+-Na+ Ion-exchange Glass Waveguide with Index Profile of Gauss,” Chinese Journal of Lasers, vol.31, no.1, pp. 37-40, 2004. (In Chinese)

[130].     P. Wang, J. Zheng and G. C. Righini, “Study of Cu+--Na+ Ion-exchange on BK7 Glass,” ACTA PHOTONICA SINICA, vol. 31, no. Z2, pp. 185-188, 2002. (In Chinese)

[131].     J. Zheng, P. Wang, et al., “Characterization of Ion-Exchange Erbium Doped Silica Glass Amplifiers,” ACTA OPTICA SINICA, vol. 23, no.12, pp. 1418-1423, 2003. (In Chinese)

[132].     J. Zheng, P. Wang, et al., “UV writing Arrays of Fiber Bragg Gratings,” Chinese Journal of Lasers, vol. A29S, pp. 385-386, 2002. (In Chinese)


2.Contributions to symposia and compiled volumes



[133].     R. Ismaeel, M. I. M. Abdul Khudus, M. Gouveia, T. Lee, M. Ding, P. Wang, G. Brambilla, Glass nanowires for nonlinear optics and sensing: a top-down approach, 8th Energy, Materials, and Nanotechnology (EMN) Fall Meeting, Orlando USA 22nd-25th Nov. 2014. (Invited talk)

[134].     P. Wang, Progress in Tapered Optical fibre Based Photonic Devices and Fibre lasers From the ORC, UK, OSA Topical Meeting: the conference on Advances in Optoelectronics and Micro/nano-optics (AOM 2014), Xi'an China, 17th-20th SEP 2014. (Invited talk)

[135].     P. Wang, M. Ding, L. Bo, Y. Semenova, G. Brambilla and G. Farrell, A photonic crystal fibre tip refractometer based on multimode interference, 23rd International Conference on Optical Fiber Sensors (OFS23), Santander Spain, 2th-6th June 2014.

[136].     C. Guan, M. Ding, P. Wang, P. Hua, G. Brambilla and L. Yuan, Generation of fiber-based plasmonic airy beam, 23rd International Conference on Optical Fiber Sensors (OFS23), Santander Spain, 2th-6th June 2014.

[137].     Y. Semenova, L. Bo, P. Wang, F. Tian, H. Byrne and G. Farrell, Microfiber coupler based biosensor incorporating a layer of gold nanoparticles with improved sensitivity, 23rd International Conference on Optical Fiber Sensors (OFS23), Santander Spain, 2th-6th June 2014.

[138].     M. Ding, P. Wang, J. Wang, H. Yuan and G. Brambilla, A fiber tip refractive index sensor using FIB-milled Gold-coated singlemode-multimodesinglemode structure, 23rd International Conference on Optical Fiber Sensors (OFS23), Santander Spain, 2th-6th June 2014.

[139].     Q. Wu, Y. Ma, Y. Semenova, J. Yuan, L. Bo, P. Wang, x. Sang, M. Teng, c. Yu, C. C. O'Mahony and G. Farrell, A high sensitivity refractometer based on a tapered SCSMF structure and its application to biosensing, 23rd International Conference on Optical Fiber Sensors (OFS23), Santander Spain, 2th-6th June 2014.

[140].     P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, G. Brambilla and G. Farrell, Optical Fibre Half Taper Based Photonic Devices, 2014 Ireland-China ISCP Consortium Symposium on Nanoscience, Dublin Ireland, 12th-14th MAY 2014.

[141].     G. Farrell, L. Bo, C. Guan, Y. Semenova and P. Wang, Periodically tapered photonic crystal fibre based stain sensor fabricated by a CO2 laser technique, SPIE Photonics Europe 2014, Brussels Belgium, 14th-17th APR 2014.

[142].     N. Jing, C. Teng, J. Zheng, P. Wang and G. Farrell, Refractive Index Sensing with a Macro-bending Structure of the Multimode Micro Plastic Optical Fiber, Asia Communications and Photonics Conference 2013, Beijing China, 12th-15th NOV 2013.

[143].     P. Wang, Progress in Optical Microfibre/nanowire Based Photonic Devices and Fibre lasers From the ORC, UK, IEEE International Conference on Optoelectronics and Microelectronics 2013, Harbin China, 7th-9th SEP 2013. (Invited talk)

[144].     P. Wang, L. Bo, Y. Semenova, G. Farrell, G. Brambilla, A Multimode Fibre Tip Based Temperature Sensor, OSA Sensors 2013, Puerto Rico USA, 14th-17th JULY 2013.

[145].     P. Wang, L. Bo, C. C. O'Mahony, Y. Semenova and G. Farrell Tapered optical microfibre coupler based biosensor for biomedical diagnostics application, ONNA 2013, Onna-Son, Okinawa JAPAN, 1st-7th JUN 2013.

[146].     Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu and G. Farrell, Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay, 5th European Workshop on Optical Fibre Sensors, Krakow POLAND, 19th-22nd MAY 2013.

[147].     P. Wang, L. Bo, Y. Semenova and G. Farrell, Tapered microfibre coupler based biosensor, 3rd International Conference on Bio-sensing Technology 2013 , Sitges SPAIN, 12th-15th MAY 2013.

[148].     C. Grivas, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna, P. G. Lagoudakis, Single-mode tuneable laser operation of hybrid microcavities based on CdSe/CdS core/shell colloidal nanorods on silica microspheres, EPS-QEOD Europhoton, Stockholm SWEDEN, 26th-31st AUG 2012.

[149].     P. Wang, G. Brambilla, M. Ding, L. Bo, Y. Semenova, Q. Wu and G. Farrell, Refractive index sensing measurement based on periodically tapered small core singlemode fibre, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing CHINA, 15th-19th OCT 2012.

[150].     Q. Wu, Y. Ma, Y. Semenova, P. Wang, H. Chan and G. Farrell, Enhanced RI sensor using a combination of a long period fiber grating and a small core singlemode fiber (SCSMF) structure, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing CHINA, 15th-19th OCT 2012.

[151].     Y. Semenova, L. Bo, S. Mathews, P. Wang, Q. Wu and G. Farrell, Spectral tuning of a microfiber coupler with a liquid crystal overlay, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing CHINA, 15th-19th OCT 2012.

[152].     L. Bo, P. Wang, Y. Semenova, G. Brambilla and G. FarrellAn investigation of the polarization dependence of a temperature sensor based on an optical microfiber coupler, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing CHINA, 15th-19th OCT 2012.

[153].     M. Ding, P. Wang and G. Brambilla, A fast-response microfiber coupler tip high temperature sensor, 22nd International Conference on Optical Fiber Sensors (OFS-22), Beijing CHINA, 15th-19th OCT 2012.

[154].     M. Ding, P. Wang, G. Brambilla, A compact temperature sensor based on micrometric optical fiber coupler tip, Optical Sensors, Monterey CA USA, 24th-28th June 2012.

[155].     C. Grivas, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna and P. G. Lagoudakis, Single-mode laser operation of CdSe/CdS Core/Shell colloidal quantum rods on silica microspheres, E-MRS Spring Meeting 2012, Strasbourg FRANCE, 14th-18th May 2012.

[156].     M. Ding, P. Wang, G. Brambilla, A high-T high-Resolution thermometer based on a microfiber coupler tip, the Conference on Lasers and Electro-Optics (CLEO 2012), San Jose CA, USA, 6th-11th May 2012.

[157].     C. Grivas, P. Andreakou, P. Wang, M. Ding, G. Brambilla, L. Manna and P. G. Lagoudakis, Hybrid lasers based on CdSe/CdS core/shell colloidal quantum rods on silica microspheres, the Conference on Lasers and Electro-Optics (CLEO 2012), San Jose, CA, USA, 6th-11th May 2012.

[158].     P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “Resolution improvement of a ratiometric wavelength measurement system by using an optical microfibre coupler,” the International Symposium on Photonics and Optoelectronics (SOPO 2012), Shanghai CHINA, 21st-23rd May 2012.

[159].     P. Wang, G. Brambilla, M. Ding, X. Zhang, Y. Semenova, Q. Wu, G. Farrell, “An SMS fiber structure based on chalcogenide multimode fiber,” SPIE Photonics Europe 2012, Brussels BELGIUM, 16th-19th Apr 2012.

[160].     M. Ding, M. Belal, G. Y. Chen, R. Al-Azawi, T. Lee, Y. Jung, P. Wang, X. L. Zhang, Z. Q. Song, F. Xu, R. Lorenzi, T. P. Newson, G.Brambilla, “Optical microfiber devices and sensors,” Asia Communications and Photonics Conference and Exhibition (ACP), 83070Y, Shanghai, CHINA 13th-16th Nov 2011.

[161].     M. Ding, P. Wang, T. Lee, G. Brambilla, “Focused ion beam engraved phase-shifted Bragg grating microcavity resonator,” Conference MediNano4, Rome ITALY, 24th-25th Oct 2011.

[162].     P. Wang, Y. Semenova, Q. Wu, G. Brambilla and G. Farrell, “Design of an extra-low-loss broadband Y-branch waveguide splitter based on a tapered MMI structure,” the 30th Progress In Electromagnetics Research Symposium, Suzhou CHINA, 12th-16th Sep 2011.

http://www.piers.org/piers2011Suzhou/files/FinalProgram.pdf

[163].     P. Wang, G. Brambilla Y. Semenova, Q. Wu and G. Farrell, “Chalcogenide microsphere fabricated from fibre taper-drawn using resistive heating,” the 19th Annual International Conference on Composites/Nano Engineering (ICCE-19), Shanghai CHINA, 24th-30th Jul 2011.

http://site.icce-nano.org/Clients/iccenanoorg/icce-19%20web,%20june%2030,%202011%20thursday%20at%205am.pdf

[164].     P. Wang, G. Brambilla, Y. Semenova, Q. Wu, J. Zheng and G. Farrell, “The use of 2D and 3D WA-BPM models to analyze total-internal-reflection based integrated optical switches,” International Symposium On Photoelectronic Detection and Imaging 2011, Beijing CHINA, 24th-26th May 2011. Proceedings of SPIE, vol. 8191, pp. 81910I (2011).

http://www.orc.soton.ac.uk/viewpublication.html?pid=5159

[165].     P. Wang, G. Brambilla, M. Ding, Y. Wang, Y. Semenova, Q. Wu and G. Farrell, “An improved ratiometric wavelength measurement system incorporating fibre comb filters fabricated by CO2 laser irradiation,” 21st International Conference on Optical fiber Sensors , Ottawa CANADA, 15th-19th May 2011. Proc. of the SPIE, vol. 7753, pp. 775355 (2011).

[166].     P. Wang, G. Brambilla, Y. Semenova, Q. Wu and G. Farrell, “Optimization of an Integrated Wavelength Monitor Device,” SPIE Optics+Optoelectronics 2011, Prague CZECH, 18th-21st April 2011. Proceedings of SPIE vol. 8073, pp. 80731N (2011).http://www.orc.soton.ac.uk/viewpublication.html?pid=5130

[167].     Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, G. Farrell, Simultaneous measurement of displacement and temperature with a single singlemode-multimode-singlemode (SMS) fiber structure in Optical Sensors and Biophotonics II, Proceedings of SPIE, vol. 7990 (SPIE, Bellingham, WA 2011) pp. 79900Q (2011).

[168].     Q. Wu, Y. Semenova, P. Wang, G. Farrell, The use of a bent singlemode-multimode-singlemode (SMS) fiber structure for vibration sensing in 21st International Conference on Optical Fiber Sensors, Proceedings of SPIE, vol. 7753 (SPIE, Bellingham, WA 2011) pp. 77535G (2011).

[169].     P. Wang, G. Brambilla, Y. Semenova, Q. Wu, J. Zheng and G. Farrell, “Proposal for a Simple Polarization converter based on Integrated Optical Ion Exchanged Waveguide,” The 9th International Conference on Optical Communications and Networks (ICOCN2010), Nanjing CHINA, 24th-27th Oct 2010.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05778508

[170].     P. Wang, Y. Semenova, Q. Wu, J. Zheng and G. Farrell, “WA-BPM based models to analyze Total-Internal-Reflection based integrated optical switches,” China-Ireland International Conference on Information and Communications Technologies 2010 (CIICT 2010), Wuhan CHINA, 10th-11th Oct 2010, Paper no.: 60045.

[171].     P. Wang, Y. Semenova, Q. Wu, G. Farrell, “A macrobending fiber based micro-displacement sensor utilizing whispering-gallery modes,” The International Symposium on Photonics and Optoelectronics (SOPO 2010), Chengdu CHINA, 19th-21st June 2010, Paper no.: 60440. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5504392&tag=1

[172].     P. Wang, Y. Semenova, Q. Wu, A. Sun, G. Farrell, “A macrobending fiber based vibration sensor using Whispering Gallery mode,” SPIE Photonics Europe 2010, Brussels BELGIUM, 11th-16th April 2010, Proc. of SPIE, vol. 7726, pp. 772623 (2010).

[173].     Q. Wu, Y. Semenova, A. M. Hatta, P. Wang, G. Farrell, “Single-Multiple-Single mode fiber structures for simultaneous measurement of strain and temperature,” SPIE Photonics Europe 2010, Brussels BELGIUM, 11th-16th April 2010, Proc. of SPIE, vol. 7726, pp. 77261L (2010).

[174].     P. Wang, Y. Semenova, Q. Wu, G. Farrell, “Implementation of Fiber Filters Based on a Macrobending High-Bend Loss Fiber Utilizing the Whispering Gallery Mode Effect,” SPIE Defense, Security & Sensing 2010, Orlando USA, 5th-9th Apr 2010, Proc. of SPIE, vol. 7677, pp. 767725 (2010).

[175].     P. Wang, Y. Semenova, Q. Wu, G. Farrell, “A macrobending fiber based micro-displacement sensor utilizing whispering-gallery modes,” 20th International Conference on Optical Fibre Sensors, Edinburgh UK, 5th-9th Oct 2009, Proc. of SPIE, vol. 7503, pp. 75033O (2009).

[176].     Q. Wu, P. Wang, Y. Semenova, G. Farrell, “Influence of system configuration on a ratiometric wavelength measurement system,” 20th International Conference on Optical Fibre Sensors, Edinburgh UK, 5th-9th Oct 2009, Proc. of SPIE, vol. 7503, pp. 750376 (2009).

[177].     Q. Wu, G. Rajan, P. Wang, Y. Semenova and G. Farrell, “Optimum design for maximum wavelength resolution based on edge filter ratiometric system,” International Symposium On Photoelectronic Detection and Imaging 2011, Beijing CHINA, 17th-19th June 2009, Proc. of SPIE, vol. 7381, pp. 73810H (2009).

[178].     Y. Ti, X. He, J. Zhang, J. Zheng, P. Wang, G. Farrell, Cu-Na ion exchange soda-lime glass planar waveguides and their photoluminescence in Passive Components and Fiber-based Devices VI, Proceedings of SPIE, vol. 7630 (SPIE, Bellingham, WA 2009) pp. 76301C (2009).

[179].     P. Wang, G. Farrell, Y. Semenova, “A high sensitivity temperature sensor based on a macrobending singlemode fiber,” Photonics Ireland 2009, Kinsale IRELAND, 14th-16th Sep 2009.

http://www.tyndall.ie/hosted/photonicsireland2009/programme.html#Posters_A

[180].     P. Wang, Y. Semenova, and G. Farrell, “A Macrobending Singlemode Fiber Based Refractometer: Proposal and Design,” Oral presentation on the Conference of Photon08, 26th-29th Aug 2008, Edinburgh UK.

http://photon08.iop.org/activity/Programme/file_30389.pdf

[181].     P. Wang, G. Farrell, Y. Semenova, A. M. Hatta, and G. Rajan, “Accurate theoretical prediction on singlemode fiber macrobending loss and bending induced polarization dependent loss,” Proc. of SPIE-Photonics Europe, Strasbourg FRANCE, vol. 7003, pp. 7003-1Y (2008).

[182].     F. Qiu, Y. Ti, J. Zhang, Y. Cao, J. Zheng, P. Wang, G. Farrell, Photoluminescence of copper ion-exchanged planar waveguides in commercial soda-lime glass in Passive Components and Fiber-based Devices V, Proceedings of SPIE, vol. 7134 (SPIE, Bellingham, WA 2008) pp. 71343J (2008).

[183].     G. Rajan, Y. Semenova, G. Farrell, Q. Wang, and P. Wang, Investigation of the influence of 3dB coupler on ratiometric wavelength measurements in Optical Sensors 2008, Proceedings of SPIE, vol. 7003 (SPIE, Bellingham, WA 2008) pp. 70031U (2008).

[184].     Q. Wang, G. Rajan, P. Wang and G. Farrell, Resolution of ratiometric system for wavelength measurement in Optical Sensing Technology and Applications, Proceedings of SPIE, vol. 6585 (SPIE, Bellingham, WA 2007) pp. 658509 (2007).

[185].     P. Wang, G. G. Bentini, M. Bianconi et al., “Photonic Micro and Submicro structures in LiNbO3 Crystals,” Proc. of SPIE, Changchun CHINA, vol. 6029, pp. 60291J (2006).

[186].     M. Chiarini, G. Bentini, M. Bianconi, A. Cerutti, G. Pennest, P. Wang, L. She, P. Mazzoldi, C. Sada, “Integrated Mach-Zehnder Micro-Interferometer For Gas Trace Remote Sensing,” Proc. of SPIE, Changchun CHINA, vol. 6029, pp. 603106 (2006).

[187].     S. E, P. Wang, et al., “Design for polymer vertical channel triple coupled microring resonators filter,” Proc. of SPIE, Changchun CHINA, vol. 6025, pp. 6025-1F (2006).














© 2020 哈尔滨工程大学物理与光电工程学院
地址:哈尔滨市哈尔滨工程大学理学楼 邮编:150001
管理维护:先进激光研究实验室 技术支持:信息化处